
Given two words A and B and:

• O11, observed number of sliding windows containing both A and B
• O12, observed number of sliding windows containing A but not B
• O21, observed number of sliding windows not containing A but B
• O22, observed number of sliding windows containing neither A nor B

the following variables are defined:

• R1 = O11 + O12, number of sliding windows containing A
• R2 = O21 + O22, number of sliding windows not containing A
• C1 = O11 + O21, number of sliding windows containing B
• C2 = O12 + O22, number of sliding windows not containing B
• N = R1 + R2 = C1 + C2, number of sliding windows
• E11 = (R1C1/N), expected number of sliding windows containing both A and B
• E12 = (R1C2/N), expected number of sliding windows containing A but not B
• E21 = (R2C1/N), expected number of sliding windows not containing A but B
• E22 = (R2C2/N), expected number of sliding windows containing neither A nor B

The definitions of co-occurrence formulas are the following:

• jaccard: 1 - O11 / (O11 + O12 + O21)
• liddell: 1 - (O11O22 - O12O21) / (C1C2)
• dice: 1 - 2O11 / (R1 + C1)
• hyperlex: 1 - max(O11 / R1,O11 / C1)
• poissonstirling: O11(log O11 – log E11 -1)
• chisquared: 1000 - N(O11 - E11)2 / (E11E22)
• zscore: 1 - (O11 - E11) / sqr(E11)
• ms: 1 - min(O11 / R1,O11 / C1)
• oddsratio: 1 - log((O11O22) / (O12O21))
• loglikelihood: 1 - 2(O11 log(O11/ E11) + O12 log(O12 / E12) + O21 log(O21 / E21) + O22 log(O22 / E22))
• gmean: 1 - O11/sqr(R1C1) = 1 - O11/sqr(NE11)

• mi (mutual information): 1 - log(O11/E11)
• ngd (normalized Google distance): (max(log R1,log C1) - log O11) / (N - min(log R1,log C1))

TreeCloud builds a tree cloud
visualization of a text, which
looks like a tag cloud where the
tags are displayed around a tree
to reflect the co-occurrence
distance between the words in
the text.

avocat,avocat.N+Hum+Prof:ms
avocate,avocat.N+Hum+Prof:fs
avocats,avocat. N+Hum+Prof:mp
avocates,avocat.N+Hum+Prof:fp

avocat d’affaires,avocat d’affaires.N+Hum+Prof:ms
avocate d’affaires,avocat d’affaires.N+Hum+Prof:fs
avocats d’affaires,avocat d’affaires. N+Hum+Prof:mp
avocates d’affaires,avocat d’affaires.N+Hum+Prof:fp

Several ways to use Unitex/GramLab

Unitex-GramLab is a corpus processing suite [MATCH]
Unitex-GramLab is an open source corpus processing suite [MATCH]
Unitex-GramLab is a hard to learn corpus processing suite [FAIL]
Unitex-GramLab is [FAIL]

1 inflected form
2 ,canonical form
3 .grammatical category
4 +semantic attributes
5 :inflectional information (m: masculine, f: feminine, s: singular, p: plural)

business lawyer

Unitex/GramLab is a corpus analyser and annotation tool

• Based on Automata and RTNs with outputs

• Multilingual: Up to 22 languages (French, English,..., Greek, ... , Korean, Thaï)

• Unicode 3.0 (UTF8, UTF16LE, UTF16BE)

• Cross-platform: Linux, macOS, Windows

• Open source: https://github.com/UnitexGramLab

• Website and binary installers: http://unitexgramlab.org

• Under development since 2001 by a group of passionate volunteers

Unitex/GramLab uses linguistic resources:

• DELA (LADL electronic dictionaries)

A typical DELA entry is composed by a simple or compound inflected form, followed by a
lemma and grammatical information. Each entry can be associated with syntactic and
semantic attributes and inflection rules:

inflected_form,lemma.grammatical_information+attributes:inflection_rule

Example: Given the French simple word “avocat” (lawyer) and the compound word “avocat
d’affaires” (business lawyer), a DELA representation would be:

• Syntactic or semantic rules called «local grammars» represented by graphs

• Graphical representations of local grammars are composed by a set of linked boxes.

• A successful path is a path between initial and final states.

lawyer

TreeCloud & Unitex: an increased synergy
Claude Martineau

Projet PEPS CNRS/UPE Eclavit

TreeCloud is a tree cloud visualization of a text

The grammar below contains two search paths:

• an adverb (<ADV>) ending in -ly followed by a past participle (<V:K>)
• a noun (<N>) followed by a verb in progressive form (<be.V> <V:G>)
A lexical mask like <V:K> refers to the text dictionary.
The recognized sequences are surrounded by the tag <pattern>. The results are represented in the
form of concordances.

Some examples of matched and unmatched sequences by the above grammar:

An example of analysis

Sample of concordances

A very simple local grammar

Notice that Unitex/GramLab can also produce an annotated text that includes all the tagged patterns.

GramLab IDE Unitex IDE

Unitex Core

Two interfaces written in JAVA:

• Unitex IDE (classic)
• GramLab IDE (project-oriented)

Unitex Core written in C/C++

Text dictionary

Application of a dictionary; the result is the text dictionary, then application of a local grammar

They refer to

Command lines or system calls with Perl, Python, etc.

Use the API C and JAVA (JNI) that provides access to
• a virtual file system
• a persistence layer for resources (alphabets, dictionaries and corpora)

How and Why to plug Unitex into TreeCloud?

Take advantage of the work already done by Unitex

Unitex/GramLab analysis steps

Normalize

Tokenize

Dico

Locate

Concord

created files

Concordances Annotated text

program called

dlf, dlc, err

tokens.txt, text.cod

concord.ind

At the end of the Unitex analysis process,
text.snt contains a cleaned text
(normalization of separator characters),
text.cod contains the list of indexes of the
tokens into the tokens.txt file list.

dlf, dlc, err, respectively contain simple
words, compound words, unknown words

concord.ind contains the matched
sequences with their position into the text
(XXX, and multiword units)

To get the «new text», we retokenize the text with matched sequences of the concord.ind file
as the new tokens of the text. New token.txt and text.cod files are created. This process
prevents double reading of the text and double division into words.

Thanks to the Unitex API and virtual file system, all this work is done in memory.

• 2009: 1st C version developed by Jean-Charles Bontemps
• 2012: Transition to Unicode developed by Claude Martineau
• 2014: 1st implementation of Unitex developed by Claude Martineau

Several versions of TreeCloud

Downloadable version in Python

On-line version in C

• 2009: TreeCloud 1.3 for Windows, Linux, Mac developed by Philippe Gambette
Use of SplitsTree 4.10 to draw the tree

Get a larger and more accurate coverage of forbidden words

Insert multiwords into the tree

1) Unitex transforms the input text into a new text with all the
forbidden/stopwords replaced by the XXX « word »

Construction of the tree with Unitex

2) The new text is sent to TreeCloud with XXX as the unique
forbidden word (the unique word in the stop list)

The adjacent local grammar contains three paths/boxes:

• The greyed box represents a call to a subgraph that
recognizes auxiliary and modal verbs.
• The second box uses some lexical masks (<ADV>,
<CONJ>, ...) to match grammatical words.
• The <ANTIPERSO> lexical mask in the last box matches
a list of stopwords given by the user.
Each word of this list is labelled/tagged with ANTIPERSO.
<NB> matches numbers.

If a dictionary contains compound words, these words
can be kept in the tree but all multiwords cannot be
listed in a dictionary.

The adjacent grammar contains a path that recognizes
person names. The variable P contains the name of a
person captured by the subgraph Name_of_Person.

The .{Pers} label is added to the output (2017 online
version).

Conclusion

 Plug-in of Unitex into TreeCloud provides:

• A more accurate representation of forbidden words

• All kinds of multiwords to be recognized in the text and presented
in the tree

• A visual representation of some grammatical or semantic categories
of the words.

• A faster construction of the tree (via a careful use of the Unitex API)

2017 on-line version of TreeCloud: an improved implementation

Introduction of the concept of file processing

In the online version of 2014, there is only a single Unitex processing for each language. The
necessary resources were hard-coded into the program.

In the new 2017 version, there can be several processing procedures for each language.
Furthermore, the Serbian language (Latin and Cyrillic) has been added. In order to manage
these pairs (language, processing) a concept of processing file has been set up.

For example, in the processing file below, the first line indicates the path for French resources,
then three dictionaries (French general dictionary, first name dictionary, toponym dictionary)
have to be applied to the text. In the end, the local grammar is applied in the replace mode.

REP:TreeCloud_WS/French/src
NB_DICOS=3

FICHIER=Dela/dela-fr-public.bin
FICHIER=Dela/prenom-s.bin
FICHIER=Dela/Prolex-Unitex_1_2_TOPONYMES.bin

GRAMMAIRE:
FICHIER=Graphs/Treecloud_N_Pers_Top_v1_FR.fst2
MODE=REPLACE

Make a strong selection of the words kept in the tree

Since the number of words kept in the tree is very low
(50 up to 150) and depends on their frequency, if a
special category should be displayed, their selection
should be made carefully. The adjacent grammar keeps
only compound nouns.

Tree of the 50 most frequent words in a Greek article

Tree of the 20 most frequent compound and person nouns in an English article

Some examples of trees in different languages

Tree of the 45 most frequent compound and person nouns in a Jules Verne’s novel

Tree of the 30 most frequent words in a Serbian article

In order to display verbs into the tree, it could be
useful to get their LEMMA (since they have many
inflected forms). The adjacent grammar is designed
for this goal. A similar process is used for languages
with nouns or adjectives with cases (e.g. Serbian or
Greek).

Remove empty words

Word selection

Co-occurrence search

Get distances between words

Build the tree

Size of the words

Color of the words

Draw the tree

Input text

Tree construction process

Stopword lists of French, English, Spanish, etc.

The n most frequent words

Co-occurrence window (sliding window, online version) or
separator character

12 co-occurrence distance formulas

Call to SplitsTree (downloadable version), integrated (on-line version)

Using Frequencies or personalized values

Using Frequencies, chronology, dispersion or personalized values

• The stopword list contains grammatical words and auxiliary or modal verbs.

For example, in English: the, of, is, was, have, may, can, etc.

The stopwords are usually the most common words in a language. To build a meaningful
tree, all these words must be firstly removed from the input text.

• Whenever a sliding window of analysis is used, its size (i.e. a number of words) must be
given as parameter.

Co-occurrence and distance calculation

Call to SplitsTree (downloadable version), integrated (online version)

The adjacent treecloud
gives an overview of Barack
Obama’s 2008 presidential
campaign speeches.

http://treecloud.univ-mlv.fr

text.snt

https://github.com/UnitexGramLab
A2_H_Treecloud_Unitex_v3.pptx
http://unitexgramlab.org/
A2_H_Treecloud_Unitex_v10.ppt
A2_H_Treecloud_Unitex_v10.ppt
A2_H_Treecloud_Unitex_v10.ppt

